Na diagramie przedstawiono wyniki pracy klasowej z matematyki w pewnej klasie.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Z informacji podanych na diagramie wynika, że
A. pracę klasową pisało 30 uczniów.
B. najczęściej powtarzającą się oceną jest 4.
C. mediana wyników z pracy klasowej wynosi 2.
D. średnia wyników z pracy klasowej jest równa 3,6
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Odległość na osi liczbowej między największą i najmniejszą spośród liczb:
0, 3/4, -5/2, -2 jest równa
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Połowa uczestników wycieczki urodziła się w Polsce, co trzeci urodził się w Niemczech, a pięciu pozostałych we Francji. W wycieczce brało udział
A. 26 osób.
B. 30 osób.
C. 46 osób.
D. 60 osób
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe
Glazurnik układał płytki. Wykres przedstawia liczbę ułożonych płytek w zależności od czasu w trakcie ośmiogodzinnego dnia pracy.
Na podstawie wykresu wybierz zdanie fałszywe.
A. O godzinie 10:00 glazurnik rozpoczął godzinną przerwę.
B. Od 7:00 do 8:00 glazurnik ułożył mniej płytek niż od 11:00 do 12:00.
C. W ciągu każdej godziny glazurnik układał taką samą liczbę płytek.
D. Przez ostatnie trzy godziny pracy glazurnik ułożył 50 płytek.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Cena płyty kompaktowej po 30% obniżce wynosi 49 zł. Cena tej płyty przed obniżką była równa
A. 14,70 zł.
B. 34,30 zł.
C. 63,70 zł.
D. 70,00 zł
W turnieju szachowym wzięło udział 48 uczniów pewnego gimnazjum. Liczby uczestników turnieju z klas pierwszych, drugich i trzecich są do siebie w proporcji 3 : 8 : 5.
Jaki procent uczestników turnieju stanowili drugoklasiści? Wybierz odpowiedź spośród podanych.
A. 17%
B. 24%
C. 33%
D. 50%
W turnieju szachowym wzięło udział 48 uczniów pewnego gimnazjum. Liczby uczestników turnieju z klas pierwszych, drugich i trzecich są do siebie w proporcji 3 : 8 : 5.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Liczba uczniów klas pierwszych, którzy wzięli udział w turnieju, jest równa
A. 8
B. 9
C. 10
D. 11
Organizatorzy konkursu matematycznego przygotowali zestaw, w którym było 10 pytań z algebry i 8 pytań z geometrii. Uczestnicy konkursu losowali kolejno po jednym pytaniu, które po wylosowaniu było usuwane z zestawu. Pierwszy uczestnik wylosował pytanie z algebry.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Małgosia narysowała w opisany sposób czwarty równoległobok. Współrzędna y prawego górnego wierzchołka tego równoległoboku jest równa
A. 8
B. 9
C. 10
D. 11
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Agnieszka narysowała w taki sam sposób n równoległoboków. Współrzędna y prawego górnego wierzchołka ostatniego równoległoboku jest równa
A. n + 2
B. 2n
C. 2n + 2
D. 4n
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Współrzędne prawego górnego wierzchołka ostatniego narysowanego równoległoboku są równe (a,b). Współrzędne takiego wierzchołka w następnym równoległoboku będą równe
A. (a + 4,b + 2)
B. (a + 2,b + 3)
C. (a + 3,b + 2)
D. (a + 3,b + 1)
Piechur porusza się z prędkością 4 km/h. Każdy jego krok ma długość 0,8 m.
Ile kroków wykona piechur w czasie 12 minut? Wybierz odpowiedź spośród podanych.
A. 1000 kroków
B. 800 kroków
C. 640 kroków
D. 100 kroków
W prostokątnym układzie współrzędnych umieszczone są dwa przystające trójkąty oraz prosta p tak, jak na rysunku.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Jeden trójkąt jest symetryczny do drugiego względem
A. osi y.
B. prostej p.
C. punktu (1,3).
D. punktu przecięcia prostej p i osi y.
E. początku układu współrzędnych.