Trzy proste przecinające się w sposób przedstawiony na rysunku tworzą trójkąt ABC. Uzasadnij, że trójkąt ABC jest równoboczny.
Na rysunku przedstawiono walec, stożek i kulę oraz niektóre ich wymiary.
Na podstawie informacji przedstawionych na rysunku wybierz zdanie prawdziwe.
A. Objętość kuli jest większa od objętości walca.
B. Objętość stożka jest większa od objętości kuli.
C. Objętość walca jest 2 razy większa od objętości kuli.
D. Objętość stożka jest 3 razy mniejsza od objętości walca.
Na rysunku przedstawiono dwa trójkąty prostokątne.
Czy te trójkąty są trójkątami podobnymi? Wybierz odpowiedź T (tak) albo N (nie) i jej uzasadnienie spośród zdań oznaczonych literami A–C.
Trzy kutry rybackie A, B i C są jednakowo oddalone od platformy wiertniczej. Wzajemne położenie kutrów przedstawiono na rysunku. Platforma wiertnicza znajduje się w punkcie O (niezaznaczonym na rysunku).
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
W prostokątnym układzie współrzędnych umieszczone są dwa przystające trójkąty oraz prosta p tak, jak na rysunku.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Jeden trójkąt jest symetryczny do drugiego względem
A. osi y.
B. prostej p.
C. punktu (1,3).
D. punktu przecięcia prostej p i osi y.
E. początku układu współrzędnych.
Piechur porusza się z prędkością 4 km/h. Każdy jego krok ma długość 0,8 m.
Ile kroków wykona piechur w czasie 12 minut? Wybierz odpowiedź spośród podanych.
A. 1000 kroków
B. 800 kroków
C. 640 kroków
D. 100 kroków
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Współrzędne prawego górnego wierzchołka ostatniego narysowanego równoległoboku są równe (a,b). Współrzędne takiego wierzchołka w następnym równoległoboku będą równe
A. (a + 4,b + 2)
B. (a + 2,b + 3)
C. (a + 3,b + 2)
D. (a + 3,b + 1)
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Agnieszka narysowała w taki sam sposób n równoległoboków. Współrzędna y prawego górnego wierzchołka ostatniego równoległoboku jest równa
A. n + 2
B. 2n
C. 2n + 2
D. 4n
Małgosia narysowała równoległobok położony w układzie współrzędnych tak jak na pierwszym rysunku. Kolejne przystające do niego równoległoboki rysowała w taki sposób, że dolny lewy wierzchołek rysowanego równoległoboku był środkiem górnego boku poprzedniego
równoległoboku (rysunek 2.).
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Małgosia narysowała w opisany sposób czwarty równoległobok. Współrzędna y prawego górnego wierzchołka tego równoległoboku jest równa
A. 8
B. 9
C. 10
D. 11
Organizatorzy konkursu matematycznego przygotowali zestaw, w którym było 10 pytań z algebry i 8 pytań z geometrii. Uczestnicy konkursu losowali kolejno po jednym pytaniu, które po wylosowaniu było usuwane z zestawu. Pierwszy uczestnik wylosował pytanie z algebry.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
W turnieju szachowym wzięło udział 48 uczniów pewnego gimnazjum. Liczby uczestników turnieju z klas pierwszych, drugich i trzecich są do siebie w proporcji 3 : 8 : 5.
Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Liczba uczniów klas pierwszych, którzy wzięli udział w turnieju, jest równa
A. 8
B. 9
C. 10
D. 11
W turnieju szachowym wzięło udział 48 uczniów pewnego gimnazjum. Liczby uczestników turnieju z klas pierwszych, drugich i trzecich są do siebie w proporcji 3 : 8 : 5.
Jaki procent uczestników turnieju stanowili drugoklasiści? Wybierz odpowiedź spośród podanych.
A. 17%
B. 24%
C. 33%
D. 50%